Poly-Ub-Substrate-Degradative Activity of 26S Proteasome Is Not Impaired in the Aging Rat Brain
نویسندگان
چکیده
Proteostasis is critical for the maintenance of life. In neuronal cells an imbalance between protein synthesis and degradation is thought to be involved in the pathogenesis of neurodegenerative diseases during aging. Partly, this seems to be due to a decrease in the activity of the ubiquitin-proteasome system, wherein the 20S/26S proteasome complexes catalyse the proteolytic step. We have characterised 20S and 26S proteasomes from cerebrum, cerebellum and hippocampus of 3 weeks old (young) and 24 month old (aged) rats. Our data reveal that the absolute amount of the proteasome is not dfferent between both age groups. Within the majority of standard proteasomes in brain the minute amounts of immuno-subunits are slightly increased in aged rat brain. While this goes along with a decrease in the activities of 20S and 26S proteasomes to hydrolyse synthetic fluorogenic tripeptide substrates from young to aged rats, the capacity of 26S proteasomes for degradation of poly-Ub-model substrates and its activation by poly-Ub-substrates is not impaired or even slightly increased in brain of aged rats. We conclude that these alterations in proteasome properties are important for maintaining proteostasis in the brain during an uncomplicated aging process.
منابع مشابه
Indirect inhibition of 26S proteasome activity in a cellular model of Huntington’s disease
Pathognomonic accumulation of ubiquitin (Ub) conjugates in human neurodegenerative diseases, such as Huntington's disease, suggests that highly aggregated proteins interfere with 26S proteasome activity. In this paper, we examine possible mechanisms by which an N-terminal fragment of mutant huntingtin (htt; N-htt) inhibits 26S function. We show that ubiquitinated N-htt-whether aggregated or not...
متن کاملPhysical association of ubiquitin ligases and the 26S proteasome.
The ubiquitin (Ub) system recognizes degradation signals of the target proteins through the E3 components of E3-E2 Ub ligases. A targeted substrate bears a covalently linked multi-Ub chain and is degraded by the ATP-dependent 26S proteasome, which consists of the 20S core protease and two 19S particles. The latter mediate the binding and unfolding of a substrate protein before its transfer to t...
متن کاملInhibition of the ubiquitin-proteasome system in Alzheimer's disease.
Alzheimer's disease is the most common cause of dementia in the elderly. Although several genetic defects have been identified in patients with a family history of this disease, the majority of cases involve individuals with no known genetic predisposition. A mutant form of ubiquitin, termed Ub(+1), has been selectively observed in the brains of Alzheimer's patients, including those with nonfam...
متن کاملThe ubiquitin-proteasome pathway and plant development.
The importance of the ubiquitin-proteasome pathway to cellular regulation in eukaryotes has become increasingly apparent during the last several years. This fact was formally acknowledged recently by the awarding of the 2004 Nobel Prize in Chemistry to Aaron Ciechanover, Avram Hershko, and Irwin Rose for the discovery of ubiquitin-mediated protein degradation. In plants, regulated protein degra...
متن کاملThe Zinc Finger of the CSN-Associated Deubiquitinating Enzyme USP15 Is Essential to Rescue the E3 Ligase Rbx1
The COP9 signalosome (CSN) is a conserved protein complex found in all eukaryotic cells and involved in the regulation of the ubiquitin (Ub)/26S proteasome system. It binds numerous proteins, including the Ub E3 ligases and the deubiquitinating enzyme Ubp12p, the S. pombe ortholog of human USP15. We found that USP15 copurified with the human CSN complex. Isolated CSN complex exhibited protease ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 8 شماره
صفحات -
تاریخ انتشار 2013